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Abstract

The problem of discrete Markov Random Field optimization, or MAP inference,
can be reformulated as an integer linear program (ILP), which is NP-Hard in general.
A usual method to approximately solve this ILP is to relax the integral constraints.
Many MAP inference methods have been based on this linear programming relaxation.
In this work, we propose a new decomposition scheme to solve the dual of this relaxed
linear program, where the dependencies between any two nodes of the graph are
relaxed using Lagrangian relaxation. Since the dual function is non-differentiable,
subgradient methods are first used. The application on a stereo vision problem shows
that the convergence rate of these methods, which is O(1/ε2) in theory, is not practical.
Therefore, we smooth the dual using Nesterov’s method and then use optimal first-
order gradient methods to optimize the obtained smooth function, which result in a
better convergence rate of O(1/ε). The method can handle any graph structures with
arbitrary potential functions. As an application, a new MRF model for locally affine
image registration is proposed.
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1 Introduction

Markov Random Fields (MRFs) are a class of Probabilistic Graphical Models (PGMs),
which use a graph-based representation to encode a probability distribution, where the
nodes represent random variables and the edges represent independencies between them.

Since MRFs has the ability to model soft contextual constraints between random variables,
they are extremely suitable for image or scene modeling, which usually involve interac-
tions between a subset of pixels or scene components. The very first application of MRFs
in computer vision and image processing was proposed in [Geman and Geman, 1984] for
the problem of image denoising/restoration. Since then, they have attracted a significant
amount of computer vision research and have become a ubiquitous method for solving all
kinds of vision problems, such as image denoising and restoration [Geman and Geman,
1984; Chambolle, 2005], stereo vision [Boykov et al., 2001], multi-view reconstruction [Kol-
mogorov and Zabih, 2002; Vogiatzis et al., 2007], image segmentation [Rother et al., 2004],
optical flow and motion analysis [Glocker et al., 2008], object recognition [Felzenszwalb
and Huttenlocher, 2005],... just to name a few. Refer to [Wang et al., 2013] for a survey
on MRF modeling, inference and learning in computer vision.

One of the main reasons for which MRFs have become so popular is that many computer
vision problems, such as the ones listed above, can be formulated as labeling problems,
which can be next seen as problems of Maximum a Posteriori (MAP) inference of some
MRFs. There are four main classes of MAP inference methods:

Message-passing, also known as belief propagation (BP), was first proposed in [Pearl,
1982] for inference on trees. The idea of message passing is iteratively improving
the labeling by passing local messages between neighboring nodes. The messages
are the beliefs about the local configuration. The first generalization of BP was
Loopy belief propagation [Frey and MacKay, 1997] for the use of BP in graphs with
loops, which does not provide a guarantee on the convergence and the quality of
the solution. Recent generalizations of BP include tree-reweighted message passing
(TRW) [Wainwright et al., 2005], which approximates the energy function based on
a convex combination of trees and then maximizes a lower bound on the energy.
However, the algorithm is not guaranteed to increase this bound and thus may not
converge. Therefore, [Kolmogorov, 2006] developed a modification of this algorithm,
called sequential tree-reweighted message passing (TRW-S), in which the lower bound
is guaranteed not to decrease.

Move-making methods apply a sequence of minimizations over subsets of the label
space, iteratively improving the current labeling. These include graph cut based
methods such as α-expansion and αβ-swap [Boykov et al., 2001] for submodular, met-
ric or semi-metric energy functions; Quadratic pseudo-boolean optimization (QPBO)
[Kolmogorov and Rother, 2007] for non-submodular energy functions. A generaliza-
tion of α-expansion was proposed in [Komodakis et al., 2008], called Fast primal-dual
(FastPD), which optimizes both the MRF optimization problem and its dual at each
iteration, leading to a significant speed up. FastPD can handle arbitrary potential
functions; however, it might get stuck in sub-optimum.

Combinatorial methods see the labeling problem as an integer linear program (ILP)
and solve it exactly using combinatorial techniques such as branch-and-bound [Ot-
ten and Dechter, 2014; Martins et al., 2011], multicut [Kappes et al., 2011], etc...
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Methods in this class provide the exact integer solution, unlike the methods in the
other classes that usually provide real solutions (because they use an approximation),
which need further a rounding step to be converted to feasible integer solutions.

Convex relaxation methods approximate the original labeling problem, which is NP-
Hard, based on different relaxations and then use convex optimization techniques
to solve the relaxed problem. The most popular class of these methods is linear
programming (LP) relaxation, which consists of relaxing the integer constraints in
the integer linear program being equivalent to the MRF labeling problem. Note that
TRW, TRW-S and FastPD can also be considered to fall into this class, since they
are based on the LP relaxation. These three methods, however, might stuck in local
optimum.

The method proposed in [Komodakis and Paragios, 2009; Komodakis et al., 2011]
uses dual decomposition (DD) [Bertsekas, 1999] to decompose the dual problem into
a number of subproblems which are easy to solve, leveraging the structure of the
problem. The sum of the minima of these subproblems corresponds to a value of
the dual objective, which is a lowerbound of the primal objective. This lowerbound
is iteratively maximized using projected subgradient methods [Bertsekas, 1999] (note
that minimizing the primal objective of an LP is equivalent to maximizing its dual
objective).

Based on the same DD framework, [Kappes et al., 2012] proposed to update the
dual objective using bundle methods [Bertsekas, 1999] instead of using projected
subgradients.

These two DD methods are guaranteed to converge to the global optimum. How-
ever, they provide a very slow rate of convergence, namely O(1/ε2) time complexity
for an ε-accurate solution. This is mainly caused by the non-smoothness of the
dual objective. Thus, in [Jojic et al., 2010], Nesterov’s smoothing and accelerated
first-order gradient method [Nesterov, 2005] was applied to the previous DD frame-
work to obtain the better convergence rate of O(1/ε). However, as pointed out by
[Savchynskyy et al., 2011], there was an inconsistency in choosing the norms in [Jojic
et al., 2010], which lead to invalid complexity bounds. They also presented a sim-
ilar approach, correctly choosing the norms, and moreover, dynamically adjust the
Lipschitz constant and the smoothing parameter to further accelerate the algorithm.

Finally, other more complex relaxations methods have also been proposed, including
the quadratic programming relaxation [Ravikumar and Lafferty, 2006] and the second
order cone programming relaxation [Kumar et al., 2006]. However, as shown in
[Kumar et al., 2009], the simple LP relaxation provides a better approximation than
these more sophisticated methods.

Refer to [Kappes et al., 2013] and [Wang et al., 2013] for a more complete review on MAP
inference methods.

In this work, we will introduce a novel dual decomposition approach for solving the re-
laxed LP. In this decomposition, the dependencies between any two nodes of the graph are
relaxed using Lagrangian relaxation. Similar to [Komodakis and Paragios, 2009], subgradi-
ent methods are first used because the dual function is non-differentiable. The application
on a stereo vision problem shows that the convergence rate of these methods, which is
O(1/ε2) in theory, is not practical. Thus, we smooth the dual using Nesterov’s method
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and then use optimal first-order gradient methods to optimize the obtained smooth func-
tion, which result in a better convergence rate of O(1/ε). The method can handle any
graph structures with arbitrary potential functions. In addition, a new MRF model for
locally affine image registration is proposed at the end.

The report is organized as follows. In the next section we give a brief introduction to
PGMs and MRFs, mainly on the principle of factorizing a probability distribution and
on the MAP inference problem. In section 3, it we will show how to approximate the
MAP inference problem by a linear programming relaxation. In section 4, our novel dual
decomposition scheme using subgradient optimization is presented, with an application
on stereo disparity map estimation. Section 5 is the core of our work, where we combine
a smoothing technique with optimal first-order gradient methods to solve our proposed
dual problem. As an application, we propose a new MRF model for locally affine image
registration in section 6.
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2 Markov Random Fields and Probabilistic Graphical Mod-
els

Probabilistic graphical models (PGMs) use a graph-based representation to compactly
encode a complex probability distribution over a high-dimensional space, where the con-
ditional dependence between the variables are represented by the structure of the graph.
In this graphical representation, the nodes represent the considered random variables,
and the edges correspond to probabilistic interactions (i.e. dependencies/independencies)
between them. These independencies allow the distribution to be represented in a factor-
ized form, i.e. the joint distribution can be decomposed into a product of factors each
depending only on a subset of the variables. (And inversely, a particular factorization of
the distribution guarantees that certain independencies hold [Koller and Friedman, 2009].)

PGMs have two main classes: the first, called Bayesian networks, uses directed acyclic
graphs, and the second, Markov random fields (MRFs), uses undirected graphs. Directed
graphs are useful for expressing causal relationships between random variables, whereas
undirected graphs are more suitable for expressing soft constraints between them. These
two classes induce different factorizations for the considered distribution (and equivalently,
encode different sets of independencies), as presented below.

For a distribution p(X) over the random variable X, denote by p(x) the distribution
evaluated for the particular value x, i.e. p(x) := p(X = x). It is similar for multi-
dimensional or joint random variables.
Now consider the multi-dimensional (or joint) distribution p(X) = p(X1, X2, . . . , Xn) over
the random variables X = (X1, X2, . . . , Xn). Let G = (V, E) be a graph with the set of n
nodes V, corresponding to n random variables X1, . . . , Xn, and the set of edges E .

• If G is a directed acyclic graph, then we say that p(X) factorizes in G if and only if
p(x) is of the form:

p(x) =

n∏
i=1

p(xi|xπi) ∀x, (1)

where xπi denotes the set of parents of the node Xi.

The graph G is thus the Bayesian network encoding the distribution p(X).

• If G is an undirected graph: denote by C the set of cliques of G (a clique is a set of
fully connected nodes), then we say that p(X) factorizes in G if and only if p(x) is
of the form:

p(x) =
1

Z

∏
C∈C

ψC(xC) ∀x, (2)

where ψC are some non-negative functions of the variables xC = (xi)i∈C in the clique
C (these functions are called potentials), and Z =

∑
x

∏
C∈C ψC(xC) is a normaliza-

tion factor (such that the left-hand side of (2) is a valid probability distribution).

The graph G is thus the MRF encoding the distribution p(X).

For example, for the Bayesian network shown in Figure 1,we have the following factoriza-
tion:

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2, x3),
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Figure 1: An example of Bayesian network (left) and Markov random field (right).

and for the MRF, we have

p(x1, x2, x3, x4) =
1

Z
ψ1(x1)ψ2(x2)ψ3(x3)ψ4(x4)×

× ψ13(x1, x3)ψ23(x2, x3)ψ24(x2, x4)ψ34(x3, x4)ψ234(x2, x3, x4).

We will focus on discrete MRFs (i.e. x takes value in a discrete set) in this work. More
on PGMs can be found in [Koller and Friedman, 2009].

MAP Inference and Energy Minimization

A large variety of important computer vision problems, for example the ones listed previ-
ously, can be formulated as labeling problems, where one seeks to optimize some measure
of the quality of the labeling. One of the reasons why MRFs are so popular is that, these
labeling problems can be viewed as problems of maximum a posteriori (MAP) inference
of some MRF, i.e. finding

xopt = arg max
x

p(x) = arg max
x

1

Z

∏
C∈C

ψC(xC) (3)

where one value of the variable x represents one labeling possible to the labeling problem.
In general, this problem is known to be NP-Hard [Shimony, 1994].

This MAP inference problem can be reformulated in terms of an energy minimization
problem, which is used more often in computer vision. Since the potentials ψC are non-
negative, we can define ψC(xC) = exp {−θC(xC)} (like ψC(·), we also refer θC(·) as clique
potentials) and the joint probability becomes

p(x) =
1

Z

∏
C∈C

exp {−θC(xC)} =
1

Z
exp

{
−
∑
C∈C

θC(xC)

}
.

We define the energy of the MRF by

E(x) =
∑
C∈C

θC(xC). (4)

Clearly, the MAP inference problem (3) is equivalent to minimizing this energy:

xopt = arg max
x

p(x) = arg min
x
E(x). (5)

The most common type of MRFs that is widely used in computer vision is the pairwise
MRFs, in which the order of maximal cliques is 2 (i.e. any clique contains at most 2
nodes). The energy of a pairwise MRF factorizing in G = (V, E) is thus

E(x) =
∑
p∈V

θp(xp) +
∑
pq∈E

θpq(xp, xq) (6)
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The terms θp(·) are called the unary potentials and the terms θpq(·) are the pairwise
potentials.

3 Linear Programming Relaxation

We consider the problem of optimizing a discrete MRF factorizing in a pairwise graph
G = (V, E), where we assume that each random variable can take values in a set of labels
L of cardinality d = |L|. Define θp : L → R and θpq : L × L → R the so-called unary
potential and pairwise potential function for each node p ∈ V and each edge pq ∈ E . The
task of MRF optimization is assigning a label lq ∈ L to each node p ∈ V such that the
following MRF energy is minimized:

E =
∑
p∈V

θp(lp) +
∑
pq∈E

θpq(lp, lq). (7)

Define the indicator function up : L → {0, 1} such that up(l) = 1 if we assign the label l to
the node p (i.e. lp = l) and up(l) = 0 otherwise; the indicator function upq : L×L → {0, 1}
such that upq(l, l

′) = 1 if we assign the label l to the node p, the label l′ to the node
q, and upq(l, l

′) = 0 otherwise. Since each node is assigned with only one label, it is
straightforward that the following conditions hold:∑

l∈L
up(l) = 1, ∀p ∈ V, (8)∑

l′∈L
upq(l, l

′) = up(l), ∀pq ∈ E , ∀l ∈ L, (9)∑
l′∈L

upq(l
′, l) = uq(l), ∀pq ∈ E , ∀l ∈ L, (10)

up(l) ∈ {0, 1} , upq(l, l′) ∈ {0, 1} , ∀p ∈ V, pq ∈ E , l ∈ L, l′ ∈ L. (11)

We use the notation {f(s)}s∈S to denote the vector consisting of all the possible values of
f(s) where s is taken from the finite discrete set S. The dimension of this vector is thus |S|.

Define

up = {up(l)}l∈L ∈ {0, 1}d (12)

upq =
{
upq(l, l

′)
}
l∈L,l′∈L ∈ {0, 1}d

2

(13)

u =
{
{up}p∈V , {upq}pq∈E

}
∈ {0, 1}d|V|+d

2|E| (14)

θθθp = {θp(l)}l∈L ∈ Rd (15)

θθθpq =
{
θpq(l, l

′)
}
l,l′∈L ∈ Rd

2
(16)

θθθ =
{
{θp}p∈V , {θpq}pq∈E

}
∈ {0, 1}d|V|+d

2|E| . (17)

(18)

It is straightforward that the energy in (7) can be written in the form:

E(θθθ,u) =
∑
p∈V

θθθ>p up +
∑
pq∈E

θθθ>pqupq (19)
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and we need to minimize this energy with respect to u, satisfying the constraints (8),
(9), (10) and (11). The set of u satisfying these constraints is known as the marginal
polytope [Wainwright et al., 2005]. The MRF optimization has now become an integer
linear program. If we relax the integer constraints (11) to

up(l) ≥ 0, upq(l, l
′) ≥ 0, ∀p ∈ V, pq ∈ E , l ∈ L, l′ ∈ L, (20)

and keep all the other constraints, then the marginal polytope becomes the local marginal
polytope. Let U denote this local marginal polytope, i.e. U is given by

U = {u | u satisfies (8), (9), (10) and (20)} . (21)

The LP-relaxed MRF problem is thus given by:

minimize E(θθθ,u) =
∑
p∈V

θθθ>p up +
∑
pq∈E

θθθ>pqupq

subject to u ∈ U ,
(22)

We will reformulate the constraint u ∈ U to get a standard look of an LP. Denote by
1 the Rd vector with all elements equal to 1. The constraints (8) can be re-written as
1>up = 1 for any p, while (9) can be re-written as D · upq = up ∀pq ∈ E , and (10) as
C · upq = uq ∀pq ∈ E , where

D = diag(1>,1>, . . . ,1>), C =
[
diag(1) diag(1) · · · diag(1)

]
(23)

where D has d vectors in the diagonal and C has d blocks diag(1) (thus the size of D and
C are d× d2).
Therefore, (22) can be re-written as

minimize E(θθθ,u) =
∑
p∈V

θθθ>p up +
∑
pq∈E

θθθ>pqupq

subject to 1>up = 1 ∀p ∈ V,
D · upq = up ∀pq ∈ E ,
C · upq = uq ∀pq ∈ E ,
1 � u � 0.

(24)

Note that the redundant constraint 1 � u (which can be inferred form the other con-
straints) has been added. We shall see later that this is for simplicity in solving the
sub-problems when doing dual decomposition.

4 Projected Subgradient Dual Decomposition

Dual decomposition (DD) is an old but quite powerful technique to solve non-linear op-
timization problems [Bertsekas, 1999]. In section 4.1 we present the general principle of
dual decomposition, then in section 4.2 we propose a new dual decomposition scheme to
solve the LP (24). Note that this decomposition scheme is different from the one in pre-
vious works [Komodakis and Paragios, 2009; Komodakis et al., 2011; Kappes et al., 2012;
Jojic et al., 2010; Savchynskyy et al., 2011]. Section 4.3 presents experimental results on
a problem of stereo disparity map estimation.
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4.1 The principle

We briefly present the dual decomposition technique with subgradient (or supergradient)
scheme. Details can be found in [Bertsekas, 1999].

The key idea of DD is to decompose a difficult large problem into smaller easier subprob-
lems using Lagrangian relaxation, and then extract a solution by correctly combining the
solutions to the sub-problems. Thus, DD has two principal components: several subprob-
lems, called the slaves, and a master problem will act as a coordinator between the slaves.

Figure 2: The principle of dual decomposition: the dual problem is decomposed into
easier slave problems, which are coordinated by a master problem. Image taken from
[Komodakis et al., 2011].

Consider the following convex problem:

minimize f(x) :=
n∑
i=1

fi(xi)

subject to
n∑
i=1

Aixi = 0,

(25)

where, fi : X → R are convex functions, X ⊂ Rn is a closed convex set, Ai ∈ Rm×n
(i = 1, · · · , n).

We relax the equality constraints using Lagrange relaxation. The Lagrangian is given by:

L(x,λλλ) =

n∑
i=1

fi(x) + λλλ>

(
n∑
i=1

Aixi

)
=

n∑
i=1

(
fi(xi) + λλλ>Aixi

)
,

and the (Lagrange) dual function by:

g(λλλ) = min
x∈Xn

L(x,λλλ) = min
x∈Xn

n∑
i=1

(
fi(xi) + λλλ>Aixi

)
. (26)

The function f(x) can be referred as the (Lagrange) primal function. The maximal
value of the dual function provide a lowerbound on the minimum of the primal func-
tion: maxλλλ g(λλλ) ≤ minx f(x). This property is called the weak duality. When equality
holds, we say that the strong duality holds. For the problem (25), the condition for which
the strong duality holds is that there is at least a point x ∈ X such that the equality
constraint holds. We suppose this is the case.

We refer to the problem (25) as the primal problem (or simply the primal), and the problem
of maximizing the dual function as the dual problem (or the dual). If strong duality holds,

8



then instead of solving directly the primal, we can solve the dual and then recover the
optimum x∗ to the primal from the optimum λλλ∗ to the dual, using x∗ = arg minx L(x,λλλ∗).

Clearly, from (26), we can see that the problem of finding the dual function decouples into
n independent sub-problems, finding:

gi(λλλ) = min
xi∈X

{
fi(xi) + λλλ>Aixi

}
. (27)

These are the slaves. The dual problem becomes

max
λλλ

n∑
i=1

gi(λλλ), (28)

which serves as the master. This problem is convex and so it can be solved using a sub-
gradient method (note that g(λλλ) is not differentiable) and the convergence to the global
optimum is guaranteed. At each iteration, λλλ is updated by λλλ ←− λλλ + αt∇g(λλλ), where
∇g(λλλ) denotes the supergradient of the function g(·) at λλλ.

For a function of the form h(λλλ) = miny∈C
{
a(y) + λλλ>b(y)

}
= a(y∗) + λλλ>b(y∗) where C is

a compact set, we have

h(λλλ′) ≤ a(y∗) + (λλλ′)>b(y∗) = h(λλλ) + (λλλ′ − λλλ)>b(y∗),

which means b(y∗) is a supergradient of h(·) at λλλ. Applying this result to the dual function
(26), we see that

∑n
i=1 Aix

∗
i is a supergradient at λλλ, where x∗i are the optimal solutions

to the slaves (27). Therefore, the update at each iteration is λλλ←− λλλ+ αt (
∑n

i=1 Aix
∗
i ).

Note that there are problems in which we have constraints on λλλ, for example λλλ ∈ Λ,
some feasible set. In this case, the updated value of λλλ must be projected onto this set:
λλλ←− [λλλ+ αt∇g(λλλ)]Λ.

The presented technique was used in the dual decomposition framework proposed by
[Komodakis et al., 2011].

4.2 Applied to MRF optimization

We now apply the techniques presented previously to the LP (24).

We first relax the two equality constraints involving upq in (24) (i.e. the coupling con-
straints) using Lagrangian method. The Lagrangian is

L(u,λλλ,ννν) = E(θθθ,u) +
∑
pq∈E

λλλ>pq(D · upq − up) +
∑
pq∈E

ννν>pq(C · upq − uq)

= E(θθθ,u)−
∑
pq∈E

λλλ>pqup −
∑
pq∈E

ννν>pquq +
∑
pq∈E

(
λλλ>pqD · upq + ννν>pqC · upq

)
.

If we convert the MRF into a directed graph, where each edge becomes directed (in any
manner), then it is seen that

∑
pq∈E =

∑
p∈V

∑
q∈Ch(p) =

∑
q∈V

∑
p∈Pa(q) where Ch(p)

and Pa(p) respectively denote the set of children and the set of parents of the node p.
Therefore, we have
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∑
pq∈E

λλλ>pqup =
∑
p∈V

∑
q∈Ch(p)

λλλ>pqup =
∑
p∈V

 ∑
q∈Ch(p)

λλλpq

> up

∑
pq∈E

ννν>pquq =
∑
q∈V

∑
p∈Pa(q)

ννν>pquq =
∑
p∈V

∑
q∈Pa(p)

ννν>qpup =
∑
p∈V

 ∑
q∈Pa(p)

νννqp

> up

Denote λλλp = −
∑

q∈Ch(p)λλλpq and νννp = −
∑

q∈Pa(p) νννqp we have

L(u,λλλ,ννν) =
∑
p∈V

(θθθp + λλλp + νννp)
>up +

∑
pq∈E

(θθθpq + D>λλλpq + C>νννpq)
>upq. (29)

To obtain the dual function g(λλλ,ννν), we minimize L(u,λλλ,ννν) subject to 1>up = 1 ∀p ∈ V
and 1 � u � 0:

g(λλλ,ννν) = min
1>up=1,up�0 ∀p

∑
p∈V

(θθθp + λλλp + νννp)
>up


+ min

1�upq�0 ∀pq∈E

∑
pq∈E

(θθθpq + D>λλλpq + C>νννpq)
>upq


=
∑
p∈V

min
1>up=1,up�0

(θθθp + λλλp + νννp)
>up +

∑
pq∈E

min
1�upq�0

(θθθpq + D>λλλpq + C>νννpq)
>upq.

Therefore, the slave problems are

gp(λλλp, νννp) = min
1>up=1,up�0

(θθθp + λλλp + +νννp)
>up, ∀p ∈ V, (30)

gpq(λλλpq, νννpq) = min
1�upq�0

(θθθpq + D>λλλpq + C>νννpq)
>upq, ∀pq ∈ E . (31)

And the master problem is maximizing

g(λλλ,ννν) =
∑
p∈V

gp(λλλp, νννp) +
∑
pq∈E

gpq(λλλpq, νννpq) (32)

over the set

Λ =

{{λλλp} , {λλλpq} , {νννp} , {νννpq}}
∣∣∣∣∣∣ λλλp +

∑
q∈Ch(p)

λλλpq = νννq +
∑

p∈Pa(q)

νννpq = 0 ∀pq ∈ E


(33)

We can view the above decomposition scheme as a decomposition of the problem into local
problems on each node and edge (Figure 3), since the slaves (30) and (31) involved only
node and edge variables. Note that the decomposition scheme proposed by [Komodakis
et al., 2011] does not include the above scheme.

Solving the slaves

The solution ūp and ūpq to the slaves (30) and (31) are straightforward:

ūp[i] = 1 and ūp[j] = 0 ∀j 6= i, where i = arg min
i

(θθθp + λλλp + νννp)[i], (34)

ūpq[i] =

{
0 if (θθθpq + D>λλλpq + C>νννpq)[i] ≥ 0,

1 if (θθθpq + D>λλλpq + C>νννpq)[i] < 0
∀i. (35)

10



+

Figure 3: The problem is decomposed into local sub-problems at each node and each
edge. Here we use a grid graph for illustration, the decomposition is of course valid for
any other structures.

Solving the master

Note that the dual function (32) can be re-written as g(λλλ,ννν) = min

{
a(u) +

[
λλλ
ννν

]>
b(u)

}
where

b(u) =


{up}p∈V
{ypq}pq∈E
{up}p∈V
{zpq}pq∈E

 , ypq := D · upq, zpq := C · upq.

Hence, if ū is an optimal solution to the slave problems, then b(ū) is a supergradient of g
at (λλλ,ννν). Therefore, at each iteration, λλλ and ννν are updated by:

λλλp ←− [λλλp + αtūp]Λ, νννp ←− [νννp + αtūp]Λ (36)

λλλpq ←− [λλλpq + αtȳpq]Λ, νννpq ←− [νννpq + αtz̄pq]Λ (37)

where αt > 0 is the step size at iteration t, and [a]Λ denotes the projection of a on the set
Λ. This projection is given by Lemma 1 below.

Lemma 1 The Euclidean projection (λ̄λλ, ν̄νν) of a given point (a,b) on the set Λ is given
by:

λ̄λλpq = apq −
1

|Ch(p)|+ 1

ap +
∑

q∈Ch(p)

apq

 , ∀pq ∈ E , (38)

λ̄λλp = −

 ∑
q∈Ch(p)

λ̄λλpq

 , ∀p ∈ V; (39)

ν̄ννpq = bpq −
1

|Pa(q)|+ 1

bq +
∑

p∈Pa(q)

bpq

 , ∀pq ∈ E , (40)

ν̄ννq = −

 ∑
p∈Pa(q)

ν̄ννpq

 , ∀q ∈ V. (41)

Proof See Appendices, page 34. �

Using this lemma, it is easy to show that the updating rules (36) and (37) are reduced to

λλλp ←− λλλp + αt∆λλλp, νννp ←− νννp + αt∆νννp

λλλpq ←− λλλpq + αt∆λλλpq, νννpq ←− νννpq + αt∆νννpq

11



where

∆λλλp = up −
up +

∑
r∈Ch(p) ypr

|Ch(p)|+ 1
, ∆νννp = up −

up +
∑

r∈Pa(p) zpr

|Pa(p)|+ 1
, (42)

∆λλλpq = ypq −
up +

∑
r∈Ch(p) ypr

|Ch(p)|+ 1
, ∆νννpq = zpq −

up +
∑

r∈Pa(p) zpr

|Pa(p)|+ 1
. (43)

Moreover, instead of updating (λλλ,ννν), and then updating θθθp +λλλp + νννp and θθθpq + D>λλλpq +
C>νννpq to solve the slave problems, we can directly update θθθp and θθθpq using θθθp ←−
θθθp + αt∆λλλp + αt∆νννp and θθθpq ←− θθθpq + αtD

>∆λλλpq + αtC
>∆νννpq.

Finally, we have the following algorithm:

Algorithm

1. Solve the node slave problems:

(a) Find an i such that θθθp[i] = minj θθθp[j].

(b) Get the solution
ūp[i] = 1 and ūp[j] = 0 ∀j 6= i. (44)

2. Solve the edge slave problems:

ūpq[i] =

{
0 if θθθpq[i] ≥ 0,

1 if θθθpq[i] < 0
∀i. (45)

3. Compute ȳpq = D · ūpq and z̄pq = C · ūpq and then ∆λλλ and ∆ννν using (42) and (43).

4. Update the slave parameters:

θθθp ←− θθθp + αt∆λλλp + αt∆νννp

θθθpq ←− θθθpq + αtD
>∆λλλpq + αtC

>∆νννpq.

5. Go back to 1. and repeat until convergence.

4.3 Results

We apply our algorithm for computing the disparity maps from the well-known Tsukuba
stereo images (Figure 4).

(a) Left image (b) Right image (c) Disparity ground-truth

Figure 4: Images used for the experiments.
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We use a grid graph with 4-connectivity, each node corresponds to each pixel of the dis-
parity map and there is an edge connecting any pair of neighboring pixels. The sizes of
the images are w = 384, h = 288. Thus, the number of nodes is |V| = wh = 110592 and
the number of edges is |E| = w(h− 1) + h(w − 1) = 220512.

The MAP inference consists of assigning each node with a label that corresponds to the
disparity of the corresponding pixel. The MRF energy is given by

E =
∑
p∈V

θp(dp) +
∑
pq∈E

θpq(dp, dq), (46)

where dp is the disparity assigned to the node p, taking values from the set of labels
L = {0, 1, . . . , 16}. Denote by I1 the left grayscale image and by I2 the right grayscale
image.
We define the potentials using truncated absolute difference functions:

θp(dp) = min(|I1(x, y)− I2(x− dp, y)|, σ) (p = (x, y))

θpq(dp, dq) = wpq min(|dp − dq|, τ).

The unary potentials penalize solutions that are inconsistent with the observed data, they
are also called the data terms; whereas the pairwise potentials enforces spatial coherence
and often called the smoothness terms. This model was discussed for example in [Zhang
and Seitz, 2007]. We can choose for example σ = 18, τ = 2 and wpq = 10 ∀pq ∈ E .

The results are shown in Figure 5.
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(b) The values of the primal and the dual.

Figure 5: Results by subgradient dual decomposition.

Theoretically, we know that the algorithm will converge after a big enough number of iter-
ations. Indeed, from the results, we observe that the dual and primal tend to convergence.
However, the convergence rate of subgradient methods is O(1/ε2) and in our example, this
is just too loose.
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5 Smoothing and Accelerated First-order Gradient Meth-
ods

The reason we had to use subgradient methods instead of classical gradient methods was
because the (convex) dual function (32) is not differentiable. As we have seen, subgradient
methods have a poor convergence rate, which is theoretically O(1/ε2) [Bertsekas, 1999].
A method to improve the convergent rate is smoothing the dual, and then using classical
gradient descent methods, which can achieve O(1/ε) [Bertsekas, 1999]. Or even better,
if the gradient of the smoothed objective function is Lipschitz continuous, then a class
of accelerated first-order methods can be applied to have O(

√
L/ε) rate (where L is the

Lipschitz constant). The combination of smoothing and accelerated first-order method
was pioneered by [Nesterov, 2005] for a class of functions. A unified framework for a more
general class of functions was introduced in [Beck and Teboulle, 2012].

The strategy has been applied to MRF optimization by several authors, for example by
[Jojic et al., 2010] and [Savchynskyy et al., 2011] for the dual decomposition framework
proposed in [Komodakis and Paragios, 2009]. In this work, we apply it to our proposed
dual decomposition approach.

In Section 5.1, the smoothing technique in [Nesterov, 2005] will be presented. Section 5.2
will show how to apply this technique to our previous MRF dual decomposition approach.
In Section 5.3 we show how to apply accelerated first-order methods to minimize the
obtained smooth function. Finally, Section 5.4 we apply the method to the previous
stereo example to show that it completely outperforms the projected subgradient dual
decomposition that we previously proposed in Section 4.

5.1 Smoothing technique

We briefly present the technique proposed by [Nesterov, 2005], which provides a smooth
approximation for any function f : E1 → R of the form:

f(x) = max
u∈Q

{
〈Ax, u〉E2

− φ(u)
}

(47)

where:

• E1, E2 are finite-dimensional real vector spaces;

• Q is a bounded closed convex set in E2;

• φ(·) is a continuous convex function on Q;

• A : E1 → E∗2 a linear map from E1 to the dual space E∗2 of E2. The adjoint operator
A∗ : E2 → E∗1 is defined by 〈A∗u, x〉E1

= 〈Ax, u〉E2
∀x ∈ E1,∀u ∈ E2. The norm

of A is given by:

‖A‖ = sup
x∈E1,u∈E2

{
〈Ax, u〉E2

: ‖x‖E1
= ‖u‖E2

= 1
}
.

For simplicity, the results and derivations are presented for the particular case E1 =
(Rn, ‖·‖p) and E∗2 = (Rm, ‖·‖q), to which the application to our problem is limited. We
recall the following fundamental results in functional analysis (see for example [Higham,
1992]):
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• The dual norm of `1 norm is `∞ norm and vice-versa.

• The dual norm of `p norm (p > 1) is `p′ norm with 1
p + 1

p′ = 1.

Thus, we have E∗1 =
(
Rn, ‖·‖ p

p−1

)
and E2 =

(
Rm, ‖·‖ q

q−1

)
. (We use the convention that

p
p−1 =∞ if p = 1.)

In this case, the linear map A from E1 to E∗2 , i.e. from (Rn, ‖·‖p) to (Rm, ‖·‖q), can be
represented by an m×n matrix A, called the representing matrix. The norm of this linear
map is the induced norm of the representing matrix:

‖A‖ = ‖A‖pq = sup
x∈Rn\{0}

‖Ax‖q
‖x‖p

.

Now, we seek a smooth approximation of the function f : Rn → R of the form:

f(x) = max
u∈Q

{
(Ax)>u− φ(u)

}
(48)

where A is an Rm×n matrix, Q ⊂ E2 =
(
Rm, ‖·‖ q

q−1

)
a bounded closed convex set,

φ : Q → R is a continuous convex function. We will show later that the (additive)
inverse of the dual of our MRF optimization problem can be written in this
form.

Let d : Q→ R be a function with the following properties:

• d(·) is continuous and strongly convex with convexity parameter σ > 0.

• minu∈Q d(u) = 0. Thus, from the previous property we have d(u) ≥ σ
2 ‖u− u0‖2

where u0 = arg minu∈Q d(u) is the prox center of Q.

The function d(·) is called a prox function of the set Q [Nesterov, 2005]. Note that we
have equipped E2 with the norm ‖·‖ q

q−1
, thus, the inequality in the latter property should

read d(u) ≥ σ
2 ‖u− u0‖2 q

q−1
.

Define

fµ(x) = max
u∈Q

{
(Ax)>u− φ(u)− µd(u)

}
= (Ax)>uµ(x)− φ(uµ(x))− µd(uµ(x)) (49)

where uµ(x) = arg maxu∈Q
{

(Ax)>u− φ(u)− µd(u)
}

. We have the following results.

Theorem 1 (Smoothing) [Nesterov, 2005]

1. The function fµ(x) is well defined and continuously differentiable at any x ∈ Rn.
Moreover, this function is convex and its gradient

∇fµ(x) = A>uµ(x)

is Lipschitz continuous with constant Lµ =
‖A‖2pq
µσ , i.e.

‖∇fµ(x)−∇fµ(y)‖∗p ≤
‖A‖2pq
µσ

‖x− y‖p ∀x,y ∈ Rn.
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2. Denote D = maxu∈Q d(u). Then for any x ∈ Rn we have:

fµ(x) ≤ f(x) ≤ fµ(x) + µD. (50)

From the inequality (50) we see that fµ(x) is an ε-accurate approximation of f(x) with
ε = µD.

5.2 Applied to smooth the dual of our MRF optimization problem

In subsection 5.2.1, we will first reformulate the MRF dual problem so that the previous
smoothing technique can be applied. Next, in section 5.2.2, we will detail how to apply
the previous smoothing technique to our new dual problem.

5.2.1 The MRF dual problem

Recall that our MRF optimization problem reduces to the linear program (24). For the
purpose of smoothing (that will become clear later), we will slightly reformulate that LP
in the following form:

minimize E(θθθ,u) =
∑
p∈V

θθθ>p up +
∑
pq∈E

θθθ>pqupq

subject to 1>up = 1 ∀p ∈ V,
1>upq = 1 ∀pq ∈ E ,
D · upq = up ∀pq ∈ E ,
C · upq = uq ∀pq ∈ E ,
u ≥ 0.

(51)

Note that the redundant constraint 1>upq = 1 ∀pq ∈ E (which can be inferred from the
other constraints) has been added. The dimension of u is m = d |V| + d2 |E|. (We recall
that d is the number of labels.)

It is straightforward that there exists a unique matrix A such that:

A>u =

[
{−Dupq + up}pq∈E
{−Cupq + uq}pq∈E

]
. (52)

(We will later explain how to construct A at page 18.) Thus, the third and fourth equality
constraints in the primal problem (51) can be re-written as A>u = 0. Let us also re-write
the other constraints as u ∈ Q, where

Q =
{

u
∣∣∣ 1>up = 1 ∀p ∈ V, 1>upq = 1 ∀pq ∈ E , u ≥ 0

}
, (53)

which is a bounded closed convex set in Rm.

Now, we will relax the constraint A>u = 0 using Lagrangian relaxation. Denote the dual
variables by

x =

[
{λλλpq}pq∈E
{νννpq}pq∈E

]
∈ Rn, n = 2d |E| .
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Then the Lagrangian is L(u,x) = E(u) − x>A>u (which can also have the form (29))
and the dual function is

g(x) = min
u∈Q

L(u,x) = −max
u∈Q

{
(Ax)>u− E(u)

}
.

Define:
f(x) = max

u∈Q

{
(Ax)>u− E(u)

}
(54)

we have g(x) = −f(x) and thus maximizing g(x) is equivalent to minimizing f(x), which
has the form (48) (with φ(·) = E(·)) and thus can be approximated using the smoothing
technique previously presented.

5.2.2 Smoothing the dual

To smooth f(·), we need to find a prox function d(·) of the set Q, defined by (53). Then
from (49), a smooth approximation of f is then given by:

fµ(x) = max
u∈Q

{
(Ax)>u− E(u)− µd(u)

}
= max

u∈Q
{−L(u,x)− µd(u)} (55)

We use the prox function defined in the following lemma.

Lemma 2 The function

d(u) =
∑
p∈V

(
log d+

d∑
i=1

uip log uip

)
+
∑
pq∈E

2 log d+
d2∑
i=1

uipq log uipq

 (56)

is a prox function, with respect to the `1 norm, of the set Q defined by (53), with convexity
parameter

σ =
1

|V|+ |E|
. (57)

Proof See Appendices, page 35. �

Note that in using this prox function, we automatically equip Q (or E2) with the
norm `1, or equivalently, we set q =∞. (Recall that the norm equipped to E2 is ‖·‖ q

q−1
.)

The optimal solution uµ(x) of (55) can be computed:

uip =
exp(aip)∑d
j=1 exp(ajp)

i = 1, . . . , d (58)

uipq =
exp(aipq)∑d2

j=1 exp(ajpq)
i = 1, . . . , d2. (59)

and finally the smooth approximation is:

fµ(x) = µ
∑
p∈V

log

(
d∑
i=1

exp(aip)

)
+ µ

∑
pq∈E

log

 d2∑
i=1

exp(aipq)

− µD (60)
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where

ap = − 1

µ
(θθθp + λλλp + νννp)

apq = − 1

µ
(θθθpq + D>λλλpq + C>νννpq)

and
D = max

u∈Q
d(u) =

∑
p∈V

log d+
∑
pq∈E

2 log d = (|V|+ 2 |E|) log d. (61)

Refer to the Appendices, page 36 for the calculation details.

Now, according to Theorem 1 (page 15), we have the following results:

1. The function fµ(x) is well defined and continuously differentiable at any x ∈ Rn.
Moreover, this function is convex and its gradient

∇fµ(x) = A>uµ(x) =

[
{−Duµ(x)pq + uµ(x)p}pq∈E
{−Cuµ(x)pq + uµ(x)q}pq∈E

]
using (52) (62)

is Lipschitz continuous, with respect to the norm ‖·‖p, with constant

Lµ =
‖A‖2p,∞
µσ

=
(|V|+ |E|) ‖A‖2p,∞

µ
. (63)

2. For any x ∈ Rn we have:

fµ(x) ≤ f(x) ≤ fµ(x) + µD (64)

where D = (|V|+ 2 |E|) log d.

Computation of the Lipschitz constant

The Lipschitz constant is computed using (63), which requires the computation of ‖A‖2p,∞.
We are particularly interested in the `1, `2 and `∞ norms. We have the following results
for the induced norm ‖A‖p,q (see [Higham, 1992; Drakakis and Pearlmutter, 2009] for
example):

‖A‖1,∞ = max
1≤i≤m,1≤j≤n

|aij | (65)

‖A‖2,∞ = max
1≤i≤m

‖ai‖2 (66)

‖A‖∞,∞ = max
1≤i≤m

‖ai‖1 (67)

where ai is the i-th row of A.

The matrix A is defined by (52). We construct it as follows. Define A> =

[
A1 B2

A2 B2

]
such

that [
A1 B1

]
u = {−Dupq + up}pq∈E[

A2 B2

]
u = {−Cupq + uq}pq∈E
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where A1 and A2 have |E| × |V| blocks, each block is a d × d matrix; B1 and B2 have
|E| × (|V|+ |E|) blocks, each block is a d× d2 matrix.
For any (directed) edge pq, let epq denotes its edge number, 1 ≤ epq ≤ |E| (the edges are
numbered from 1 to |E|). We set

A1[epq, p] = Id, B1[epq, epq] = −D, A2[epq, q] = Id, B2[epq, epq] = −C ∀pq ∈ E ,

where Id is the d-dimensional identity matrix and M[i, j] denotes the (i, j) block of a block
matrix M. (We recall that D and C are defined by (23), thus A contains only 0, 1 and
−1.) Clearly, A also encodes the structure of the graph.

With this construction of the matrix A, we can easily have

‖A‖1,∞ = 1, ‖A‖2,∞ = max
p∈V

√
|N (p)|, ‖A‖∞,∞ = max

p∈V
|N (p)| (68)

where N (p) is the set of neighboring nodes of node p.

5.3 Accelerated first-order methods

Once the objective has been smoothed, we obtain a convex and continuously differentiable
function with Lipschitz continuous gradient. A class of very efficient methods, called ac-
celerated first-order methods and pioneered by [Nesterov, 1983], are very suitable for this
type of function. “Accelerated” because they provide an improved convergence rate of
O(
√
L/ε) (where L is the Lipschitz constant), compared to the classical gradient method

with O(L/ε). These methods are also often called optimal first-order methods since the
complexity bound that they provide O(

√
L/ε) is the best complexity bound that one can

obtain using only first-order information, as proved by [Nesterov, 1988].

An extension for minimizing composite functions (of the form F (x) = f(x) + g(x) where
f is smooth convex, g is convex but possibly non-smooth) was presented in [Nesterov
et al., 2007]. More recently, [Beck and Teboulle, 2009] presented Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA), which is an extension of [Nesterov, 1983] for handling
composite functions (the two are equivalent when g = 0).

It should be noted that the level of applicability of these methods are not the same, de-
pending on the norm of the Lipschitz continuity of the gradient. For example, the methods
in [Nesterov, 1988, 2005; Nesterov et al., 2007] can handle any norms, whereas [Nesterov,
1983] and FISTA [Beck and Teboulle, 2009] can be applied only for `2 norm.

Overview and unified analysis can be found in [Nesterov, 2004] and [Tseng, 2008].

We will use FISTA [Nesterov, 1983; Beck and Teboulle, 2009] for simplicity. Since FISTA
can only handle `2, we choose p = 2.

The algorithm is presented below (refer to [Beck and Teboulle, 2009] for details), where
f(x) is convex and continuously differentiable, the gradient of f is Lipschitz continuous,
with respect to the norm `2, with Lipschitz constant L. If L is not known or computable,
or if it is just too loose (i.e. too large), then we use a backtracking step, as shown in the
next algorithm.
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FISTA with constant step size

• Input: L > 0,y = x0 ∈ Rn, t0 = 1,.

• Repeat for k = 1, 2, . . .:

1. xk = y − 1
L∇f(y)

2. tk =
1+

√
1+4t2k−1

2

3. y = xk +
tk−1−1
tk

(xk − xk−1)

FISTA with backtracking

• Input: L0 > 0, β > 1,y = x0 ∈ RN , t0 = 1,.

• Repeat for k = 1, 2, . . .:

1. Lk = Lk−1

2. xk = y − 1
Lk
∇f(y)

3. While f(xk) > f(y) +∇f(y)>(xk − y) + Lk
2 ‖xk − y‖22

(a) Lk = βLk

(b) xk = y − 1
Lk
∇f(y)

End

4. tk =
1+

√
1+4t2k−1

2

5. y = xk +
tk−1−1
tk

(xk − xk−1)

5.4 Applied to the Tsukuba stereo problem

We use the same grid-graph as previous. Recall that |V| = 110592, |E| = 220512, d = 16.
Thus, if we choose µ = 10−4, then it is guaranteed that we will get an ε accurate solution,
with ε = µD2 = µ (|V|+ 2 |E|) log d ' 153.

The Lipschitz constant (63) becomes

Lµ =
(|V|+ |E|) ‖A‖22,∞

µ
=

(|V|+ |E|)×maxp∈V × |N (p)|
µ

=
(|V|+ |E|)× 4

µ
= 4× (110592 + 220512)× 104. (69)

This value is too loose. Therefore, the FISTA algorithm with backtracking was used.
The results are shown in Figure 7. The optimal energy of this problem is about 485.
After 500 iterations, the energy reached 576. We observe clearly that with smoothing
and accelerated first-order methods, the convergence has been significantly improved over
subgradient methods. In future work, we plan to study different smoothing schemes as
well as different optimal first-order methods, and perform a comparison with state-of-the
art methods.
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Figure 7: Results

5.5 Related work

Several authors tried to improve the convergence rate of the dual decomposition framework
proposed by [Komodakis and Paragios, 2009], where subgradient methods were used. [Jojic
et al., 2010] used the smoothing and accelerated gradient method by [Nesterov, 2005]
for higher-order graphs. [Savchynskyy et al., 2011] used the the smoothing method of
[Nesterov, 2005] in combination with an accelerated gradient method by [Nesterov, 2004],
for binary grid-graphs with two acyclic slaves.
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6 Locally Affine Image Registration Using Markov Random
Fields

Image registration is a fundamental task that has been extensively studied and applied in
medical image analysis [Paragios et al., 2014]. The task of image registration is to find a
spatial transformation T aligning two (or a set of) images. Given two images I1 and I2,
one seeks a spatial transformation T such that T (I1) and I2 are matched. This problem
is often formulated as a minimization problem:

min
T

S(T (I1), I2) +R(T )

where S(·, ·) is some similarity measure that quantifies the level of alignment between
the images, and R(·) is a regularization term that may favor any specific properties in
the solution that the user requires, and seeks to tackle the difficulty associated with the
ill-posedness of the problem [Sotiras et al., 2013]. We called I1 the floating image and I2

the fixed image.

The type of the transformation usually defines the name of the corresponding registra-
tion task. Parametric registration considers the transformation as a parameterized model
where each parameter defines a degree of freedom of the deformation. An example is
affine registration with 6 degrees of freedom. These models often offer a good compromise
between performance and computational complexity. In non-parametric registration, also
called dense or deformable registration, each pixel has its individual transformation, which
is more challenging and often requires hight computational cost.

One approach for reducing computational complexity is to restrict the transformation to
be of low degree of freedoms, by either considering the dense deformation as a combination
of parametric deformations (such as piecewise affine [Pitiot et al., 2003; Commowick et al.,
2008] or poly-affine [Arsigny et al., 2003, 2006]), or using control-points interpolated de-
formation models (such as Free Form Deformations [Sederberg and Parry, 1986; Rueckert
et al., 1999]).

A complete survey on many aspects (models, similarity measures, optimization methods,
etc...) on deformable medical image registration can be found in [Sotiras et al., 2013].

In this work, we propose a new locally affine model for image registration, in which each
pixel is supposed to be deformed under a possible number of affine deformations and the
optimal transformation will be computed using a discrete MRF formulation. This is an
ongoing work and only some parts of it have been done. In the next section, we will
present the general idea of the model and explain how the problem can be reformulated as
a labeling problem. In section 6.2, the construction the MRF model for this problem will
be drawn, and in section 6.3, a method for the affine deformation step will be presented.
Since this is still an ongoing work, we have not produced any experimental results yet.

6.1 The idea

We assume that the local deformation around any pixel is affine, i.e. the neighborhood of
any pixel p = (x, y) in I1 can be perfectly registered to the image I2 by an affine transfor-
mation, under which p will be matched to its (true) corresponding pixel p′ = (x′, y′) in I2

(we assume there is no occlusion) (Figure 8). Convention: a pixel p may denote its image
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coordinates p = (x, y) or its homogeneous coordinates (x, y, 1), depending on the context.

I1

p

I2

p′

Figure 8: We assume that the local deformation around any pixel is affine.

Now consider the following problem: given a patch (of some radius) centered at p in I1,
register it to I2. This problem is called (affine) template matching in the Computer Vision
literature [Korman et al., 2013] (the size of the patch is considered small compared to the
image, hence the name template).

Clearly, if we can solve exactly this template matching problem for every pixel in I1, then
the flow field can be trivially obtained. Now suppose we use an iterative method, which
is fast but the quality of the solution depends on the initialization (an example of such a
method is the well-known Lucas-Kanade algorithm [Lucas and Kanade, 1981]). A possible
solution to this initialization-sensitivity problem is running the algorithm with different
initializations and then choosing the best one. (More robust methods exist for solving the
template matching problem, for example [Korman et al., 2013], which does not rely on
initialization and is guaranteed to find an approximation to the global optimum. These
will be investigated in future work.)

I1

p

I2

p

p′

Different
initializations

Figure 9: For template matching algorithms that are sensitive to initialization, a possible
solution is trying with different initializations and then choosing the best one.

Denote P1(p) a patch centered at p in I1. For every pixel p, we move this patch around p
by a vector d and use the new patch as initialization for the template matching algorithm
(the new patch is centered at p + d). Denote Ad

p the affine transformation matrix

returned by the algorithm, and edp the corresponding matching error.
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Denote D the pre-defined set of d and suppose that D is the same for all pixels. For
example, D can be defined by sampling along the main coordinate axes, as shown in
Figure 10. In this case,

D = {. . . , (−2δ, 0), (−δ, 0), (0, 0), (δ, 0), . . . , (0, δ), (0,−δ) . . .} .

I2

δ

p

p +

[
2δ
0

]
Initialization at p +

[
2δ
0

]

Figure 10: Sampling the position of the initialization along the main coordinate axes.

Note that moving the patch by d and use it as initialization is equivalent to initializing
the transformation matrix A at I + d, where I is the identity matrix. Recall that any
affine transformation matrix is of the form

A =

r1 r2 t1
r3 r4 t2
0 0 1

 .

Now for each pixel p, we have |D| candidates of transformation matrix Ad
p , where d ∈ D.

Under |D| possible affine transformations, a pixel p in I1 is mapped to |D| pixels in I2

(two or more of these pixels may overlap). These |D| affine transformations are defined

by |D| matrices A
dp
p ,dp ∈ D.

We need to choose for each pixel the most appropriate affine transformation from the set
of possible ones, such that at the end the difference between the two images are minimized.
Clearly, this is a multi-labeling problem where each label is assigned to each possible affine
transformations, and thus, can be solved using MRFs.

6.2 MRF modeling

Recall that we need to choose for each pixel an affine transformation among the |D| pos-
sible ones, thus we can define the set of labels as L = {1, . . . , |D|}, where each label
corresponds to a translation vector d in D, and each pixel defines a node in the MRF. For
simplicity, we use a grid graph as usual.

The labeling problem can be solved by minimizing the following MRF energy:

min
lp∈L,p∈V

E :=
∑
p∈V

θp(lp) +
∑
pq∈E

θpq(lp, lq). (70)

The variables and functions are defined below.
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Unary potentials penalize solutions that are inconsistent with the observed data (thus
they are also called data terms). If we consider the pixels independently, then the
optimal assignments should be the ones that minimize the matching error. Thus we
can define the data terms as:

θp(lp) = e
dp
p . (71)

Pairwise potentials penalize displacement changes between adjacent pixels (thus they
are also called smoothness terms). For any adjacent pixels p and q, their correspond-
ing displacements up and uq should not be too different. If p and q are assigned lp
and lq respectively, then their corresponding displacements are

up(lp) = A
dp
p p− p, uq(lq) = A

dp
q q− q.

Hence, we can define the smoothness terms as increasing functions of ‖up − uq‖, for
example

θpq(lp, lq) = wpq ‖up(lp)− uq(lq)‖ (72)

where wpq is some weighting coefficient.

6.3 Affine template matching and Lucas-Kanade algorithm

In this section we present the Lucas-Kanade method [Lucas and Kanade, 1981] for doing
affine registration. An in-depth discussion on Lucas-Kanade method and its variants was
given in [Baker and Matthews, 2004], on which our presentation is based on.

We want to align a template T (x) to an input image I(x), where x = (x, y). Let s denote
the vector of parameters and W(x; s) denote the parameterized set of allowed warps. The
warp W(x; s) takes the pixel x in the template T and maps it to the sub-pixel location
W(x; s) in the image I.

The goal of the Lucas-Kanade algorithm is to minimize the sum of squared errors between
two images: the template T and the image I warped back onto the coordinate frame of
the template, i.e. minimizing

f(s) =
∑
x∈T

[I(W(x; s))− T (x)]2 (73)

with respect to s. This is a non-linear optimization problem, and the Lucas-Kanade
method solves it using steepest descent method. At each iteration, the parameters are
updated by s ←− s + ∆s where ∆s is a descent direction. The direction ∆s is a steepest
descent direction if it decreases the objective function the most, i.e. it minimizes f(s+∆s).

Consider the first-order Taylor expansion on [I(W(x; s)) we have

f(s + ∆s) =
∑
x

[I(W(x; s + ∆s))− T (x)]2 (74)

≈
∑
x

[I(W(x; s)) +∇I(W(x; s))> · ∂W

∂s
(x; s) ·∆s− T (x)]2 (75)

where ∇I(x) =
(
∂I
∂x ,

∂I
∂y

)>
denotes the gradient of image I at x = (x, y), ∂W

∂s is the

Jacobian of the warp.
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Minimizing the above quantity by setting the derivative with respect to ∆s to zero:

2
∑
x

(
∇I(W(x; s))>

∂W

∂s
(x; s)

)>(
I(W(x; s)) +∇I(W(x; s))>

∂W

∂s
(x; s)∆s− T (x)

)
= 0,

we get

∆s = H−1
∑
x

(
∇I(W(x; s))>

∂W

∂s
(x; s)

)>
(T (x)− I(W(x; s))) (76)

where H is the Hessian matrix:

H =
∑
x

(
∇I(W(x; s))>

∂W

∂s
(x; s)

)>(
∇I(W(x; s))>

∂W

∂s
(x; s)

)
. (77)

The Lucas-Kanade algorithm is resumed as below.

Initialize s and repeat until ‖∆s‖ ≤ ε:

1. Warp I with W(x; s to compute I(W(x; s))

2. Compute the error image T (x)− I(W(x; s))

3. Warp the gradient ∇I with W(x; s) to obtain ∇I(W(x; s))

4. Evaluate the Jacobian ∂W
∂s at (x; s)

5. Compute ∇I(W(x; s))> ∂W∂s (x; s)

6. Compute the Hessian matrix using (77)

7. Computing the steepest descent direction ∆s using (76)

8. Update s←− s + ∆s.

Note that we are particularly interested in affine transformation. Suppose that the trans-

formation matrix is

[
s1 s2 s3

s4 s5 s6

]
, then we have s = (s1, s2, s3, s4, s5, s6). The warping

is

W(x; s) =

[
s1 s2 s3

s4 s5 s6

]xy
1

 =

[
s1x+ s2y + s3

s4x+ s5y + s6

]
and thus the Jacobian of the warp is given by

∂W

∂s
(x; s) =

[
x y 1 0 0 0
0 0 0 x y 1

]
.

Figure 11 where we transform an image with an affine transformation and extract a small
template, then we use the Lucas-Kanade algorithm to transform the template back to the
image.
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(a) Testing image I with an initialization for
Lucas-Kanade agorithm.

(b) A template T is extracted from a trans-
formed image from I.

(c) Obtained final transformation.
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(d) The objective function f(s) per iteration.

(e) Initial warped image. (f) Final warped image. (g) Extracted template.

Figure 11: A test for Lucas-Kanade algorithm.
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7 Conclusion and Future Work

In this work, we have proposed a new decomposition scheme to solve the MRF optimization
problem. Unlike the previous dual decomposition scheme, we relax the dependencies be-
tween any two nodes of the graph using Lagrangian relaxation. The relaxed dual problem
is next smoothed using Nesterov’s method and then optimized using optimal first-order
gradient methods. The algorithm is guaranteed to converge to the global optimum of the
relaxed linear program, with a convergence rate of O(1/ε). Moreover, the method can
handle any graph structures with arbitrary potential functions. As an application, we
have proposed a new MRF model for locally affine image registration, which is still an
ongoing work.

In future work, we plan to:

• Try different smoothing schemes with different optimal first-order methods;

• Produce more experimental results, on different kinds of problems, such as image
segmentation, 3D reconstruction, etc...;

• Evaluate the performance of the method, compared to the state-of-the-art;

• Complete and evaluate the proposed MRF model for locally affine image registration.
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Appendices

Euclidean projection on Λ

We give a proof for Lemma 1, stated at page 11.

Convention: if a vector v has an index p or pq, then it has the form

v =
{
{vp}p∈V , {vpq}pq∈E

}
.

Given (a,b), we need to find (λλλ,ννν) in the set Λ such that ‖λλλ− a‖2 + ‖ννν − b‖2 is mini-
mized. Clearly, it suffices to minimize ‖λλλ− a‖2 and ‖ννν − b‖2 separately, since there is no
coupling constraint between λλλ and ννν.

Note that

‖λλλ− a‖2 =
∑
p∈V

‖λλλp − ap‖2 +
∑

q∈Ch(p)

‖λλλpq − apq‖2


=
∑
p∈V

∥∥∥∥∥∥−
∑

q∈Ch(p)

λλλpq − ap

∥∥∥∥∥∥
2

+
∑

q∈Ch(p)

‖λλλpq − apq‖2


=
∑
p∈V

Fp,

where

Fp =

∥∥∥∥∥∥
∑

q∈Ch(p)

λλλpq + ap

∥∥∥∥∥∥
2

+
∑

q∈Ch(p)

‖λλλpq − apq‖2 .

Clearly, it suffices to minimize each Fp independently.
Using Lemma 3 below, we see that Fp attains its minimum if and only if

λλλpq = apq −
1

|Ch(p)|+ 1

ap +
∑

q∈Ch(p)

apq

 .

Similarly, we can deduce that ‖ννν − b‖2 is minimized if and only if

νννpq = bpq −
1

|Pa(q)|+ 1

bq +
∑

p∈Pa(q)

bpq

 ∀pq ∈ E .

Finally, since (λλλ,ννν) ∈ Λ, the terms λλλp and νννq can be computed using

λλλp = −

 ∑
q∈Ch(p)

λλλpq

 , ∀p ∈ V,

νννq = −

 ∑
p∈Pa(q)

νννpq

 , ∀q ∈ V.

The lemma is proved.
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Lemma 3 Given n+ 1 vectors a0,a1, . . . ,an in Rd. Then the minimum value of

F =

∥∥∥∥∥
n∑
i=1

ui + a0

∥∥∥∥∥
2

+
n∑
i=1

‖ui − ai‖2

over u1, . . . ,un ∈ Rd is attained if and only if ui = ai − 1
n+1s, i = 1, . . . , n, where

s =
n∑
i=0

ai.

Proof Denote yi = ui − ai, i = 1, 2, . . . , n, we have

F =

∥∥∥∥∥
n∑
i=1

yi + s

∥∥∥∥∥
2

+
n∑
i=1

‖yi‖2

Applying the Lemma 4 below for n+ 1 vectors we get

F =

∥∥∥∥∥−
n∑
i=1

yi − s

∥∥∥∥∥
2

+

n∑
i=1

‖yi‖2

≥ 1

n+ 1

∥∥∥∥∥−
n∑
i=1

yi − s + y1 + y2 + · · ·+ yn

∥∥∥∥∥
2

=
1

n+ 1
‖s‖2 .

Equality holds if and only if −
∑n

i=1 yi − s = y1 = y2 = · · · = yn, which yields yi = −1
n+1s

or ui = ai − 1
n+1s for i = 1, . . . , n. �

Lemma 4 For any n vectors u1, . . . ,un ∈ Rd, the following inequality holds

‖u1‖2 + ‖u2‖2 + · · ·+ ‖un‖2 ≥
1

n
‖u1 + u2 + · · ·+ un‖2 (78)

and equality occurs if and only if u1 = u2 = · · · = un.

Proof Denote f(u) = ‖u‖2, then the above inequality becomes

f(u1) + f(u2) + · · ·+ f(un) ≥ nf
(

u1 + u2 + · · ·+ un
n

)
, (79)

which is clearly true by Jensen’s inequality since f is convex. Also by Jensen’s inequality,
equality holds if and only if u1 = u2 = · · · = un. �

Prox function of the set Q

The proof of Lemma 2 (page 17). Indeed, it is straightforward by Lemma 5 and Lemma 6
below.

Lemma 5 The function

d(w) = log n+

n∑
i=1

wi logwi

is a prox function, with respect to the `1 norm, of the set{
w = (w1, . . . , wn) ∈ Rn | w ≥ 0,1>w = 1

}
,

with convexity parameter 1.
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Proof See [Nesterov, 2005]. �

Lemma 6 Let di(·), i = 1, 2, . . . , n, be n continuous and strongly convex functions with
respect to the L1 norm on W1,W2, . . . ,Wn, respectively, and with convexity parameters
σ1, σ2, . . . , σn, respectively. Define the function

d(w) = d1(w1) + d2(w2) + · · ·+ dn(wn)

where w = (w1,w2, . . . ,wn) ∈ W = W1 ×W2 × · · · × Wn. Then d(·) is continuous and
strongly convex, with respect to the `1 norm, on W, with convexity parameter

σ =
1

1
σ1

+ 1
σ2

+ · · ·+ 1
σn

.

If we consider the `2 norm instead of `1, then σ = mini(σi).

Proof Straightforward by definition:

d(u) ≥ d(v) +∇d(v)>(u− v) +
σ

2
‖u− v‖21

and Cauchy-Schwarz inequality. �

Smooth approximation of f

We want to compute fµ given by (55):

fµ(x) = max
u∈U
{−L(u,x)− µd2(u)} = −L(uµ(x),x)− µd2(uµ(x)).

where
uµ(x) = arg min

u∈U
{L(u,x)µd2(u)} .

We will prove the results given by (58), (59) and (60):

uip =
exp(aip)∑d
j=1 exp(ajp)

i = 1, . . . , d

uipq =
exp(aipq)∑d2

j=1 exp(ajpq)
i = 1, . . . , d2

fµ(x) = µ
∑
p∈V

log

(
d∑
i=1

exp(aip)

)
+ µ

∑
pq∈E

log

 d2∑
i=1

exp(aipq)

− µD
where

ap = − 1

µ
(θθθp + λλλp + νννp)

apq = − 1

µ
(θθθpq + D>λλλpq + C>νννpq)

D = (|V|+ 2 |E|) log d.
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Indeed, from the expression (29) of L(u,x) and the expression (56) of d(u), we have

L(u,x) + µd(u) =
∑
p∈V

{
(θθθp + λλλp + νννp)

>up + µ
d∑
i=1

uip log uip

}

+
∑
pq∈E

(θθθpq + D>λλλpq + C>νννpq)
>upq + µ

d2∑
i=1

uipq log uipq


+ µ(|V |+ 2 |E|) log d.

Using Lemma 7 below, the results are straightforward.

Lemma 7 The problem

minimize h(w) := −a>w +

n∑
i=1

wi logwi

subject to w ≥ 0, 1>w = 1

has the solution

w∗i =
exp(ai)∑n
j=1 exp(aj)

i = 1, . . . , n,

and the optimal value is

h(w∗) = − log

 n∑
j=1

exp(aj)

 .

Proof Solve the KKT systems. �
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